Lesson 10.2 Area of Parallelograms and Trapezoids

Find the area of each parallelogram.

Example -

In the figure, ABCD is a parallelogram. Find the area of parallelogram ABCD.

$$\mathsf{Base} = \underline{BC} = \underline{12} \quad \mathsf{cm}$$

$$Height = \underline{DE} = \underline{4} cm$$

Area of parallelogram ABCD = bh

= 48 cm²

The area of parallelogram ABCD is ______ square centimeters.

1. In the figure, *FGHJ* is a parallelogram. Find the area of parallelogram *FGHJ*.

_ 12 . 4

Area of parallelogram FGHJ = bh

The area of parallelogram *FGHJ* is ______ square inches.

2.

3.

Find the area of each trapezoid.

Example

In the figure, PQRS is a trapezoid. \overline{PS} is parallel to \overline{QR} . ST is the height of the trapezoid. Find the area of PQRS.

Height =
$$ST$$
 = 14 in.

Sum of bases =
$$\frac{PS}{}$$
 + $\frac{QR}{}$ = $\frac{10}{}$ + $\frac{20}{}$

$$= \frac{30}{100}$$
 in.

Area of trapezoid PQRS = $\frac{1}{2}h(b_1 + b_2)$ = $\frac{1}{2} \cdot \frac{14}{12} \cdot \frac{30}{12}$ = $\frac{210}{12} \text{ in.}^2$

The bases of a trapezoid are parallel.

20 in.

10 in.

14 in.

The area of trapezoid *PQRS* is ______ square inches.

4. In the figure, HJKL is a trapezoid. \overline{HL} is parallel to \overline{JK} . LM is the height of the trapezoid. Find the area of HJKL.

Area of trapezoid
$$HJKL = \frac{1}{2}h(b_1 + b_2)$$

$$= \frac{1}{2} \cdot \underline{\qquad} \cdot \underline{\qquad}$$

$$= \underline{\qquad} in.^2$$

The area of trapezoid *HJKL* is ______ square inches.

6. M12 ft N18 ft R

78

Find the area of each trapezoid.

Example -

In the figure, RSTU is a trapezoid. \overline{RU} is parallel to \overline{ST} . RV is the height of the trapezoid. Find the area of RSTU.

$$Height = \underline{RV} = \underline{12} m$$

Sum of bases =
$$\frac{RU}{} + \frac{ST}{}$$

= $\frac{12}{} + \frac{36}{}$
= $\frac{48}{}$ m

Area of trapezoid RSTU = $\frac{1}{2}h(b_1 + b_2)$ = $\frac{1}{2} \cdot \frac{12}{2} \cdot \frac{48}{2}$ = $\frac{288}{2}$ m²

The area of trapezoid *RSTU* is ______ square meters.

7. In the figure, DEFG is a trapezoid. \overline{DG} is parallel to \overline{EF} . GH is the height of the trapezoid. Find the area of DEFG.

Area of trapezoid
$$DEFG = \frac{1}{2}h(b_1 + b_2)$$

$$= \frac{1}{2} \cdot \underline{\qquad} \cdot \underline{\qquad}$$

$$= \underline{\qquad} in.^2$$

The area of trapezoid *DEFG* is ______ square inches.

Find the height of each trapezoid.

Example

The area of trapezoid QRST is 810 square feet. \overline{QT} is parallel to \overline{RS} . Find the height of the trapezoid.

Area of trapezoid QRST =
$$\frac{1}{2}h(b_1 + b_2)$$

$$\frac{810}{= \frac{1}{2} \cdot h \cdot (\underline{26} + \underline{34})}$$

$$\frac{810}{= \frac{1}{2} \cdot h \cdot \underline{60}}$$

$$\frac{810}{= \frac{1}{2} \cdot \underline{60} \cdot h}$$

8. The area of trapezoid WXYZ is 540 square inches. \overline{WZ} is parallel to \overline{XY} . Find the height of the trapezoid.

Area of trapezoid WXYZ =
$$\frac{1}{2}h(b_1 + b_2)$$

$$\underline{\hspace{1cm}} = \frac{1}{2} \cdot h \cdot (\underline{\hspace{1cm}} + \underline{\hspace{1cm}})$$

$$\underline{\qquad} = \frac{1}{2} \cdot h \cdot \underline{\qquad}$$

$$=\frac{1}{2}\cdot$$
_·h

The height of trapezoid WXYZ is _____ inches.

80

9. The area of trapezoid MNPQ is 1,173 square meters.

10. The area of trapezoid *ABCD* is 621 square feet.

Solve. Show your work.

Example

The area of trapezoid JKLM is 1,000 square inches. \overline{JM} is parallel to \overline{KL} .

a) Find the height of trapezoid JKLM.

Area of trapezoid JKLM =
$$\frac{1}{2}h(b_1 + b_2)$$

$$\frac{1,000}{2} = \frac{1}{2} \cdot h \cdot (\underline{32} + \underline{48})$$

$$1,000 = \frac{1}{2} \cdot h \cdot 80$$

$$\frac{1,000}{2} = \frac{1}{2} \cdot \frac{80}{1} \cdot h$$

$$_{25}$$
 = h

The height of trapezoid JKLM is ______ inches.

b) Find the area of triangle *JLM*.

Height of triangle JLM = NL = 25 in.

Area of triangle
$$JLM = \frac{1}{2}bh$$

$$=\frac{1}{2}\cdot \underline{32}\cdot \underline{25}$$

$$=$$
 400 in.²

The area of triangle JLM is 400 square inches.

Marshall Cavendish International (Singapore) Private Limited.

11. The area of trapezoid CDEF is 832 square feet. \overline{CD} is parallel to \overline{FE} .

a) Find the height of trapezoid CDEF.

Area of trapezoid CDEF = $\frac{1}{2}h(b_1 + b_2)$ $= \frac{1}{2} \cdot h \cdot (\underline{\qquad} + \underline{\qquad})$

$$\underline{\qquad} = \frac{1}{2} \cdot h \cdot \underline{\qquad}$$

$$=\frac{1}{2}\cdot$$
___·h

_____÷ ____= ____·h÷ _____

The height of trapezoid CDEF is ______ feet.

b) Find the area of triangle *FDE*.

Area of triangle $FDE = \frac{1}{2}bh$

$$= \frac{1}{2} \cdot \underline{\qquad} \cdot \underline{\qquad}$$

$$= \underline{\qquad} ft^2$$

The area of triangle FDE is ______ square feet.

3. trapezoid

$$\overline{PS}$$
 is parallel to \overline{QR} .

4. parallelogram

$$\overline{AD}$$
 is parallel to \overline{BC} .

- \overline{AB} is parallel to \overline{DC} .
- 5. trapezoid

$$\overline{DG}$$
 is parallel to \overline{EF} .

6. rhombus

$$\overline{JN}$$
 is parallel to \overline{KM} .

7. $\overline{\text{Area}} = \ell w$

$$= 13 \times 9$$

$$= 117 \text{ in.}^2$$

The area of the rectangle is 117 square inches.

8. Area = ℓw

$$= 20 \times 14$$

$$= 280 \text{ m}^2$$

The area of the rectangle is 280 square meters.

9. Area = ℓ^2

$$= 5 \times 5$$

$$= 25 \text{ cm}^2$$

The area of the square is 25 square centimeters.

10. Area = ℓ^2

$$= 11 \times 11$$

The area of the square is 121 square feet.

11. Base = $\underline{YZ} = \underline{20}$ cm

Height =
$$\underline{XW} = \underline{15}$$
 cm

Area of triangle =
$$\frac{1}{2}bh$$

$$=\frac{1}{2}\cdot\underline{20}\cdot\underline{15}$$

$$= 150 \text{ cm}^2$$

The area of triangle XYZ is 150 square centimeters.

- 12. 84 square feet
- 13. 130 square meters
- **14.** Base = ST = 8 in.

Height =
$$RU = 3.6$$
 in.

Area of triangle =
$$\frac{1}{2}bh$$

$$= \frac{1}{2} \cdot 8 \cdot 3.6$$

= 14.4 in.²

The area of triangle RST is 14.4 square inches.

- 15. 24 square feet
- 16. 37.8 square meters
- **17.** Area of triangle $STU = \frac{1}{2}bh$

$$108 = \frac{1}{2} \cdot 24 \cdot h$$

$$108 = 12 \cdot h$$

$$108 \div 12 = 12 \cdot h \div 12$$

$$9 = h$$

The height of triangle STU is 9 inches.

- 18. 20 centimeters
- **19.** 24 feet
- **20.** Area of triangle $GHJ = \frac{1}{2}bh$

$$\underline{286} = \frac{1}{2} \cdot b \cdot \underline{26}$$

$$\underline{286} = \frac{1}{2} \cdot \underline{26} \cdot b$$

$$286 = 13 \cdot h$$

$$286 \div 13 = 13 \cdot h \div 13$$

 $22 = h$

The base of triangle GHJ is 22 inches.

- 21. 16 centimeters
- **22.** 14 meters

Lesson 10.2

1. Base = GH = 20 in.

Height =
$$JK = 12$$
 in.

Area of parallelogram FGHJ = bh

$$= 20 \cdot 12$$

$$= 240 \text{ in.}^2$$

The area of parallelogram FGHJ is 240 square inches.

- 2. 48 square meters
- 3. 28.5 square centimeters
- **4.** Height = LM = 20 in.

Sum of bases =
$$HL + JK$$

$$= 15 + 30$$

$$= 45 in.$$

Area of trapezoid HJKL

$$=\frac{1}{2}h(b_1+b_2)$$

$$=\frac{1}{2}\cdot\underline{20}\cdot\underline{45}$$

$$= 450 \text{ in.}^2$$

The area of trapezoid HJKL is 450 square inches.

- 5. 78 square centimeters
- 6. 162 square feet
- **7.** Height = GH = 5 in.

Sum of bases =
$$\underline{DG} + \underline{EF}$$

$$= 5 + 9$$

$$= 14 in.$$

Area of trapezoid DEFG

$$=\frac{1}{2}h(b_1+b_2)$$

$$=\frac{1}{2}\cdot\underline{5}\cdot\underline{14}$$

$$= 35 \text{ in.}^2$$

The area of trapezoid DEFG is 35 square inches.

8. Area of trapezoid WXYZ = $\frac{1}{2}h(b_1 + b_2)$

$$\underline{540} = \frac{1}{2} \cdot h \cdot (\underline{22} + \underline{38})$$

$$\underline{540} = \frac{1}{2} \cdot h \cdot \underline{60}$$

$$\underline{540} = \frac{1}{2} \cdot \underline{60} \cdot h$$

$$540 = 30 \cdot h$$

$$540 \div 30 = 30 \cdot h \div 30$$

$$18 = h$$

The height of trapezoid WXYZ is 18 inches.

- **9.** 34 meters
- **10.** 23 feet
- **11. a)** Area of trapezoid CDEF = $\frac{1}{2}h(b_1 + b_2)$

$$832 = \frac{1}{2} \cdot h \cdot (28.6 + 13)$$

$$832 = \frac{1}{2} \cdot h \cdot 41.6$$

$$832 = \frac{1}{2} \cdot 41.6 \cdot h$$

$$832 = 20.8 \cdot h$$

$$832 \div 20.8 = 20.8 \cdot h \div 20.8$$

$$40 = h$$

The height of trapezoid CDEF is 40 feet.

b) Area of triangle $FDE = \frac{1}{2}bh$

$$= \frac{1}{2} \cdot \underline{13} \cdot \underline{40}$$

$$= 260 \text{ ft}^2$$

The area of triangle FDE is 260 square feet.

Lesson 10.3

1. Area of triangle = $\frac{1}{2}bh$ = $\frac{1}{2} \cdot 14 \cdot 9.6$ = 67.2 cm²

Area of pentagon

- = $5 \cdot$ area of triangle
- $= 5 \times 67.2$
- $= 336 \text{ cm}^2$

The area of the pentagon is 336 square centimeters.

- 2. 97.5 square inches
- **3.** Area of triangle = $\frac{1}{2}bh$

$$= \frac{1}{2} \cdot 20 \cdot 17.3$$
$$= 173 \text{ cm}^2$$

Area of hexagon

- = $\underline{6}$ · area of triangle
- $= 6 \times 173$
- $= 1,038 \text{ cm}^2$

The area of the tablemat is 1,038 square centimeters.

4. 940.5 square inches

Lesson 10.4

1.

2.

3. a) Area of square = ℓ^2

$$81 = \ell^2$$

$$\frac{\sqrt{81}}{9} = \ell$$

Area of triangle = $\frac{1}{2}bh$

$$=\frac{1}{2}\cdot \underline{15}\cdot \underline{9}$$

$$= 67.5 \text{ ft}^2$$

The area of the triangle *NPQ* is <u>67.5</u> square feet.

- **b)** Area of trapezoid MPQR
 - = area of square MNQR

$$= 81 + 67.5$$

$$= 148.5 \text{ ft}^2$$

The area of trapezoid MPQR is 148.5 square feet.

- **4. a)** 7 inches
 - **b)** 49 square inches
 - c) 105 square inches
- **5.** Area of trapezoid $STVY = \frac{1}{2}h(b_1 + b_2)$

$$242 = \frac{1}{2} \cdot h \cdot (18 + 18 + 8)$$

$$242 = \frac{1}{2} \cdot h \cdot 44$$

$$\underline{242} = \frac{1}{2} \cdot \underline{44} \cdot h$$

$$242 = 22 \cdot h$$

$$\underline{242} \div \underline{22} = \underline{22} \cdot h \div \underline{22}$$

$$11 = h$$